SURVEY ON ATTRIBUTE-BASED DATA SHARING SCHEME REVISITED IN CLOUD COMPUTING

Mr. Swapnil R. Patil, Prof. N. D. Kale
Computer Engineering Department, PVPIT, Pune, India

Abstract: Cloud storage is the best and proficient approach to handle our information remotely. In any case, since information proprietors and clients are more often than not outside the trusted area of cloud specialist co-ops the information security and get to control is the critical component at the season of delicate information put away in the cloud. Additionally, now days there are distinctive systems are accessible for information sharing and saving security of information proprietor and client. Key Escrow is the one of the significant issue now a day. We can't keep full trust over the key power focus since they might be abuse their benefits. This is unsatisfactory for data sharing circumstances. In this paper we concentrated the current procedure for sharing the information from information proprietor to information client. The methodology propose an enhanced two-party key issuing convention that can ensure that neither key power nor cloud specialist co-op can bargain the entire mystery key of a client exclusively. The method also present the idea of quality with weight, being given to upgrade the statement of characteristic, which cannot just extend the expression from paired to discretionary state, additionally help the intricacy of get to approach. In this manner, both capacity cost and encryption many-sided quality for a ciphertext are eased. Attribute based encryption is an open key based encryption that empowers get to control over encoded information utilizing access strategies and credited qualities.

Keywords: Data Confidentiality, Key Authority, Access Control policy, Data Sharing, Attribute-based encryption, Removing escrow, weighted attribute, Cloud computing.
1. INTRODUCTION

In current era there are bunches of quickly developing patterns and cloud registering is one of them. Cloud gives simple, proficient stage to store information, secure information, and get to information at any area with the assistance of web. Additionally it gives client adaptable foundations, storage room and execution. Accordingly, how to securely and efficiently share user data is one of the toughest challenges in the scenario of cloud computing [1], [10].

In a CP-ABE, client's mystery key is portrayed by a trait set, and ciphertext is connected with a get to structure. DO is permitted to characterize get to structure over the universe of traits. A client can unscramble a given ciphertext just if his/her trait set matches the get to structure over the ciphertext. Utilizing a CP-ABE framework specifically into a cloud application that may yield some open issues Firstly, all clients' mystery keys should be issued by a completely trusted key power (KA). This brings a security hazard that is known as key escrow issue. By knowing the mystery key of a framework client, the KA can unscramble the entire client's ciphertext, which remains altogether against to the will of the client. The weighted attribute is introduced to not only extend attribute expression from binary to arbitrary state, but also to simplify access policy. Thus, the storage cost and encryption cost for a ciphertext can be relieved.

Assume there is a formal structure in college, in which instructors are characterized into showing partner, speaker, related teacher and full educator [1]. We circulate the heaviness of the characteristic for every kind of the instructors as 1, 2, 3, and 4. In this way, these qualities can be indicated as "Educator: 1", "Educator: 2", "Instructor: 3" and "Instructor: 4", individually. For this situation, they can be signified by one trait which has quite recently extraordinary weights. Specifically, it can be arbitrary state properties, for example, "Instructor: showing associate, teacher, relate educator, full teacher". We here accept that an get to arrangement is spoken to as: $T = \{\text{"Lecturer" OR "Partner Teacher" OR "Full Professor"}\} \text{AND "Male"}$, and the current CP-ABE plans are executed on the type of get to strategy T . On the off chance that our proposed plan is sent, the T can be rearranged as $T' = \{\text{"Teacher: 2" AND "Male"}\}$, since the characteristic "Instructor: 2" indicates the base level in the get to approach and incorporates {"Teacher: 2", "Instructor: 3" "Instructor: 4") as a matter of course. In this manner, the capacity overhead of the comparing ciphertext and the computational cost utilized as a part of encryption can be lessened. These two structures are appeared in Fig. 1. Likewise, our technique can be utilized to express bigger quality space than any time in recent memory under a similar number of qualities. For instance, if both the property space and weighted set incorporate n components, the proposed plan can portray
n2 distinctive potential outcomes. Interestingly, the current CPABE plots just show 2n conceivable outcomes.

Fig. 1. Two equivalent access structures of a ciphertext. T represents a general access policy in the existing CP-ABE schemes. T’ denotes an improved access policy in the proposed scheme [1].

2. LITERATURE SURVEY

The literature survey that containing study of different schemes available in Attribute Based encryption (ABE). These are KP-ABE, CP-ABE, Attribute-based Encryption Scheme with Non-Monotonic Access Structures, ABE and MABE. Also include advantage, disadvantage and a comparison table of each scheme based on fine grained access control, efficiency, and computational overhead and collusion resistant.

Shulan Wang, Kaitai Liang, Joseph K. Liu, Jianyong Chen, Jianping Yu, Weixin Xie [1] revisit attribute-based data sharing scheme in order to solve the key escrow issue but also improve the expressiveness of attribute, so that the resulting scheme is friendlier to cloud computing applications. They proposed an improved two-party key issuing protocol that can guarantee that neither key authority nor cloud service provider can compromise the whole secret key of a user individually. Moreover, they introduce the concept of attribute with weight, being provided to enhance the expression of attribute, which can not only extend the expression from binary to arbitrary state, but also lighten the complexity of access policy. Therefore, both storage cost and encryption complexity for a ciphertext are relieved.

An efficient file hierarchy attribute-based encryption scheme (FH-CP-ABE) is proposed by Shulan Wang, Junwei Zhou, Joseph K. Liu, Jianping Yu, Jianyong Chen and Weixin Xie [2]. The layered access structures are integrated into a single access structure, and then the hierarchical files are encrypted with the integrated access structure. The ciphertext components related to attributes could be shared by the files. Therefore, both cipher text storage and time costs of encryption are saved. Moreover, the proposed scheme is proved
to be secure under the standard assumption. In this study, an inefficient encryption scheme based on layered model of the access structure is proposed in cloud computing, which is named file hierarchy CP-ABE scheme (or FH-CP-ABE, for short). FH-CP-ABE extends typical CP-ABE with a hierarchical structure of access policy, so as to achieve simple, flexible and fine-grained access control.

Kaitai Liang and Willy Susilo proposed [3] a searchable attribute-based proxy re-encryption system. When compared to existing systems only supporting either searchable attribute-based functionality or attribute-based proxy re-encryption, this new primitive supports both abilities and provides flexible keyword update service. Specifically, the system enables a data owner to efficiently share his data to a specified group of users matching a sharing policy and meanwhile, the data will maintain its searchable property but also the corresponding search keyword(s) can be updated after the data sharing. The server however knows nothing about the keyword(s) and the data. The new mechanism is applicable to many real-world applications, such as electronic health record systems.

Circuit ciphertext-policy attribute-based hybrid encryption with verifiable delegation has been considered in this work[4]. In such a system, combined with verifiable computation and encrypt-then-mac mechanism, the data confidentiality, the fine-grained access control and the correctness of the delegated computing results are well guaranteed at the same time. Besides, this scheme achieves security against chosen plaintext attacks under the k-multilinear Decisional Diffie-Hellman assumption.

The extended CP-ABE mechanism with multi-authorities (MA-ABE) is designed [5] for the practical application. In this paper, authors proposed an efficient and secure multi-authority access control scheme transfer the computing to the cloud server. This scheme implements partial decryption operation in cloud server and improves the user's decryption efficiency, which can be applied to the scenario of access to the Internet using mobile devices.

An attribute based encryption scheme introduced by Sahai and Waters in [6] and the goal is to provide security and access control shows that how to reduce a communication overhead between cloud server and data owner using public key compression technique for fully homomorphic encryption scheme over the integers. Whenever we use the cloud, user expects data privacy, search accuracy & less communication overhead from the cloud service providers. In order to tackle this problem, TRSE (Two Round Searchable Encryption) scheme has been proposed which achieved high data privacy through homomorphic encryption and search accuracy through vectorspace model. The problem with attribute based encryption (ABE) scheme is that data owner needs to use every authorized user's public key to encrypt
data. The application of this scheme is restricted in the real environment because it uses the access of monotonic attributes to control user’s access in the system.

3. CONCLUSION & FUTURE SCOPE

In this paper, we break down various property-based encryption plans: ABE, KP-ABE, CP-ABE, ABE with non-monotonic get to structure, HABE and MA-ABE. The fundamental get to policies are KP-ABE and CP-ABE, advance plans are acquired in light of these arrangements. In light of their kind of get to structure the plans are sorted as either monotonic or non-monotonic. CH-ABE an adjustment of Attribute Based Encryption (ABE) for the reasons for giving certifications towards the provenance the delicate information, and in addition towards the namelessness of the information proprietor; Our plan additionally empowers dynamic alteration of get to approaches o underpins proficient on-request client/property denial and break-glass access under crisis situations.

REFERENCES